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Introduction and Background:  Three of the key 

assumptions that drive most interpretations of crater 
populations are:  (1) Craters form stochastically around 
a derivable time-dependent function, (2) craters form 
randomly across a surface, and (3) the population has 
not reached equilibrium.  Two main types of process 
undermine these assumptions:  secondary cratering and 
crater saturation.  Secondary cratering occurs when the 
ejecta blocks launched from a primary impact event 
return to strike the planetary surface with enough ener-
gy to create their own craters ("secondary craters" be-
cause the event is secondary to the initial, or "prima-
ry," impact event).  These occur in a geologic instant 
and are not distributed randomly across the surface, in 
direct conflict with the first two assumptions.  Crater 
saturation occurs when so many craters have formed 
that no new craters can form without an equal fraction 
of old ones being erased [e.g., 1].  This results in a 
crater population with a distribution that does not 
change its characteristics in time and space, in direct 
conflict with the third assumption. 

There are significant ongoing discussions as to the 
magnitude of the effect of secondary cratering and 
crater saturation on these three important assumptions, 
though that discussion is a separate issue from this 
abstract.  In this abstract, we outline the spatial statistic 
approaches used to identify these two different pro-
cesses affecting populations of craters and in our talk, 
we will discuss potential improvements on these and 
the use of other techniques. 

Secondary Crater Identification from Spatial 
Statistics:  There are numerous morphologic tech-
niques to identify secondary impact craters [e.g., 2-6], 
but they are not entirely reliable, for secondaries will 
often look like primaries and hence cannot be distin-
guished based on morphologic criteria alone.  There-
fore, statistical methods are also frequently employed. 

There are three methods typically used in crater 
studies to examine the likelihood of contamination by 
non-morphologically-obvious secondary craters, some 
more rigorous than others.  First is a simple spatial 
density comparison:  A region that is thought to repre-
sent a single, random population is sub-divided into 2 
or more parts and the crater populations are compared.  
If the size-frequency distributions (SFDs) of each are 
similar to within the specified uncertainties, they are 
assumed to, at worst, have the same level of secondary 
crater contamination and, at best, no contamination.  
This is simple to implement but is poor in specificity. 

The second method is to examine the crater SFD 
structure itself.  Secondary craters typically have a 
steeper SFD than primary craters; while primaries of-

ten have slopes of –2 to –3, secondaries can have 
slopes up to –8 [e.g., 4-5].  If the SFD of the measured 
population deflects to greater than a model production 
function, then it is likely to be contaminated by uni-
dentified secondary craters. 

The third method is the Z-statistic, which is within 
the class of distance measurement for nearest neigh-
bors statistics ("NND").  This can be computed overall 
for the region being studied or for sub-regions.  The Z-
statistic is the number of standard deviations from a 
Poisson distribution (which primaries should follow) 
due to random impacts.  Because secondary craters 
tend to form more clustered than random, and the Z-
statistic indicates if a studied distribution is more clus-
tered, this method potentially finds crater populations 
that are affected by secondaries.  This has been used to 
examine crater spatial distributions looking for sec-
ondaries in the past [e.g., 7].  The specific interpreta-
tion of the Z-statistic and to what certainty the null 
hypothesis (that the craters are spatially random) is not 
rejected is subject to variation amongst individual re-
searchers. 

Saturated Crater Population Identification:  
Again, multiple techniques have been developed to 
potentially determine if crater distributions are saturat-
ed and in equilibrium.  One technique ascertains if the 
spatial density of the crater distributions has reached a 
proposed maximum density attainable by crater popu-
lations before they become saturated [1,8].  Another 
technique examines the crater SFD slopes, as some 
populations attain a cumulative SFD slope of –2 when 
they reach equilibrium, effectively shallowing [1].  The 
one we detail here uses the Z-statistic described above.  
In this case, however, the population is expected to be 
more uniform than random [9-11].  Therefore, the Z-
statistic is used to look for dense cratered distributions 
that are also more uniform than random (as opposed to 
more clustered than random).  Lissauer and Squyres et 
al. [9,10] have used this technique to show that the 
dense cratered terrains of Callisto and Rhea are likely 
saturated.  Kirchoff (this volume) has explored more 
terrains to show that densely cratered surfaces of many 
inner and outer solar system objects are likely saturat-
ed. 

Problems with These Approaches and Introduc-
tion of Suggested Alternatives:  The above-described 
identification methods have advantages and issues.  In 
general, they are commonly used, easy to calculate, 
and have some error structure that may be utilized. 

Some advantages of the SFD comparison and anal-
ysis are that it is in common use and therefor reasona-
bly well understood, there is (generally) consistent 
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agreement on slope interpretation, and it is based on 
independent model crater populations.  Some difficul-
ties in comparing these shapes is that it is inherently a 
comparative technique that can only give "as good as" 
or "worse than" comparisons, and that it can give a 
false negative when secondary crater contamination is 
significantly smaller than the overall population. 

Advantages of NND are: It is conceptually straight-
forward, is not dependent on arbitrary region sizes as it 
uses precise mapping locations, and it is easily com-
puted.  However, NND loses large-scale information 
for it is dependent on nearest neighbor proximity, indi-
vidual event information is lost, it gives only the direc-
tion of the deviation from complete spatial randomness 
(CSR), and the statistical properties are not well under-
stood with large departures from CSR. 

Additional drawbacks to using these methods are:  
Loss of information as a result of reducing at least two-
dimensional mapping to a one-dimensional summari-
zation, the error structures are dependent on researcher 
bias and method implementation such as area determi-
nation, and these methods are susceptible to fixed 
scales over which analyses are conducted and thus lose 
variable scale information. 

Two spatial point process statistical methods are 
presented here for identification of non-primary or 
saturated crater populations; these account for the is-
sues when using one-dimensional measures.  They are 
the Two Point Correlation Function (TPCF) and Rip-
ley's K function.  Both of these spatial methods operate 
on as many spatial dimensions as are required to man-
age the research question of interest, they each have 
specific error structures that allow for precise error 
assignment, and the two methods operate over a scale 
range suitable for the study objectives. 

Two Point Correlation Function:  The TPCF was 
introduced by [12 and 13] to describe galaxy clustering.  
The technique counts the number of potential non-
primaries or saturated craters in a series of annuli 
around a selected point (e.g., the primary, a possibly 
saturated surface, or secondary cluster), or it counts the 
features as part of the background.  This is unlike the 
NND which analyzes the statistics around each specific 
crater.  The TPCF derives from the joint probability 
that two secondaries, for example, lie in infinitesimally 
small area annuli around the two vector locations of 
the two secondaries; then, the TPCF is a function of 
the vectorial distance between these locations. Thus, 
given a putative secondary crater location, the TPCF is 
a function of the probability of finding, at a specified 
distance, another secondary.  The larger the value of 
the TPCF, the more clustered and hence nonrandom 
are the secondaries at the specified distance.  Second-
aries' clustering can also be used to suggest the origi-
nating primary when that primary is the center of the 
annuli.  Note that the annulus size must be predeter-
mined, which is a disadvantage.  However, the TPCF 
is a function of the differential of Ripley's K function, 

which does not suffer this difficulty. 
Ripley's K and Related Functions: Bartlett [14] 

first proposed a second-order (spatial) correlation func-
tion which Ripley [15,16] developed into a widely-
used spatial point statistic that captures the spatial de-
pendence between different regions of a point process, 
such as mapped locations of impact craters.  Bierhaus 
(2004) [7] used K-functions as a method to identify 
clustering in Europa’s small-crater population.  Others 
have offered transformations of Ripley's K function.  
Besag's L* transformation [17] is one that will be de-
scribed here. 

Ripley's K function is defined to be the expected 
number of non-primary craters (more generally, any 
designated event) within a specified distance of some 
additionally selected other crater, weighted by the re-
gion crater density (the intensity function).  Under 
CSR, the K function value is the area of a circular re-
gion with the specified distance as the radius.  Values 
of the K function larger than this circle's area suggest 
clustering of events, and K function values less than 
this area suggest uniform distribution of events (regu-
larity). 

Advantages of Ripley's K function include inde-
pendence from region shape, corrections for region 
boundary biases, retention of spatial information on 
crater distributions at all scales of interest, and use of 
precise spatial locations of the events in the estima-
tions.  A disadvantage is the Ripley's K function is that 
it is not trivial to interpret.  However, Besag's L* func-
tion transformation produces a plot that is intuitive, 
and hence interpretation is uncomplicated.  We will 
demonstrate this at the May workshop. 
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