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Introduction:  The  ability  to  make  reliable
measurements  forms  a  cornerstone  upon  which  the
empirical  sciences are built.  In  order  for a  scientific
measurement  to  be  meaningful  it  must  be
accompanied  by  an  assessment  of  its  stability.
Statistical  and  systematic  uncertainties  can  be
summarised using error bars which typically indicate
+/-  1  standard  deviation,  meaning  that  in
approximately 68% of cases the “true”  value sought
will lie within the error bar's range.

Crater  counts  are  fundamental  measurements  in
crater studies. The standard counting model for craters
assumes  Possion  statistics,  which  predicts  sqrt(N)
standard  deviation errors,  where N is the number of
craters  counted  within  some size  range.  This  error
prediction  is  testable.  Crater  counts  can  only  be
considered  valid  if  their  error  bars  are  honest
reflections  of actual  levels  of uncertainty.  Scientific
conclusions  can  not  be  made  with  any  level  of
confidence  unless  this  is  the  case.  However,  high
levels  of  variability  are  observed  in  counts  from
expert,  non-expert  and  automated  crater  counting
approaches.  These  %  errors  are  larger  than  those
predicted  using  the  Poisson  assumption,  as  can  be
seen in Figure 1 using data take from [1].

Figure 1:  One Standard Deviation % errors

We  propose  an  alternative  model  for  crater
counting  incorporating  the  efficiencies  with  which
counters  identify  false  positive  and  false  negative
craters.  We show that  certain  terms in  this  counting
model can be estimated using Binomial statistics from
repeatability data.  More importantly, we show how a
semi-automated approach  can  be applied to mitigate
against  false  positive  sources  of  uncertainty,
potentially  making  the  statistical  error  on  empirical
crater counts much smaller than is possible using raw
counts alone. This reduction in error is achieved using
Linear Poisson Models [2]. We make use of MoonZoo
[3]  citizen  science  crater  data,  undergraduate  and

expert  counts  from  the  Apollo  17  site  to  test  the
proposed methods.

Crater counting model: The estimated number of
craters within a region can be summarised using

where ND is an estimated count; PT is the efficiency
(0.0 to 1.0) with which “true” craters are counted; NT

is  the  “true”  unknown  number  of craters;  PF is  the
efficiency (0.0 to 1.0) with which “false” craters  are
counted;  and  NF is  the  number  of  potentially
ambiguous  “false”  craters  which  might  be  counted
accidentally.  The  N  terms  can  reasonably  be
considered  Poisson  for  independent  surfaces,  but
variability in  the efficiency P terms,  due to different
crater  counter's  abilities  and  personal  biases,  can
explain  the  larger  than  Poisson  errors  observed  in
practice. In cases where PT is 1.0 and PF is 0.0 then the
traditional  sqrt(ND)  error  is  valid,  however,
subjectivity  in  humans  and  ambiguity in  automated
methods prevents this best case from being achieved. 

Estimating  efficiencies: The  efficiency term  for
“true” craters can be estimated by repeated annotation.
The  ratio  of  craters  annotated  once,  F1,  to  those
annotated twice, F2, after two attempts at marking all
craters can be used to give

This efficiency was computed for 8 regions within
NAC images M104311715LE and M10431171RE for
a group of undergraduate students and an expert crater
counter (see acknowledgments). Results are presented
in Figure 2.

Figure 2: Expert vs Undergraduate Efficiencies

Estimating false positives: Where false positives
are  reported  as  a  problem,  such  as  in  automated
methods and citizen science data, the number of false
positives,  PFNF,  can be estimated by applying Linear
Poisson  Models  (LPM).  For  MoonZoo  data,  all
candidate craters can be compared to a “true” crater
template (see Figure 3). A dot product can be used to
compare  pixels  of a  template  crater  with  candidate
craters which may or may not be real. The distribution
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of template match scores for true and false craters can
be linearly  modeled  from  training  data.  The  match
scores from false craters are distinctly different  from
those of true craters (see Figure 4).

Figure 3: MoonZoo crater template, generated by
taking an average of “true” craters

Figure 4: Distribution of dot product match scores,
when dot product is applied to compare template to true

(blue) and false (red) craters in MoonZoo dataset

The  relative  quantities  of  these  different
distributions can be estimated using Likelihood. If X
is a  template match  score and  k is  a  class of crater
(e.g. a false or true component) then

where  the  P(X|k)  terms  model  the  probability
distribution of the crater template match scores, the Qk

terms  are  the  relative  quantities  of  the  different
components,  and  HX is  a  histogram  of  template
matches  from  which  false  positives  are  to  be
estimated. The Expectation Maximisation algorithm is
used to estimate the Q terms, then error propagation is
used to assess the effects of Poisson noise in training
and testing data on final measured counts

where  C  is  a  covariance  matrix,  (data)  is  a
statistical  error  from  incoming  data,  (model)  is  an
error from training data, and the sigmas are assumed
Poisson noise in match score histograms.

Testing: Bootstrap re-sampling from true and false
MoonZoo  craters  was  used  to  test  that  predicted

quantities of false positives were able to be estimated
to  within  errors  predicted  using  error  propagation.
Figures  5  and  6  show comparisons  of  predicted  to
observed counting errors when differing quantities of
training and testing data are used within the LPM.

Figure 5: Agreement between predicted to observed
errors when estimating false positives from MoonZoo

data using Linear Poisson Models with different
quantities of training data.

Figure 6: % predicted error on crater counts from
LPM with different quantities of testing data

Results: Repeatability  studies  of  expert  and
undergraduate crater counts show mark-up efficiencies
of between 70% to 90%, with expert  and non-expert
efficiencies  varying  across  the  8  test  regions.  This
moves towards explaining  larger  than  Poisson errors
in real  crater  counts. Linear  Poisson Models, applied
to crater template matches, successfully estimates false
positive  quantities  giving  counts  with  predictable
errors (Figure 5 showing a ratio of close to unity for
predicted to observed re-sampled data). Correcting for
false negatives, however, is a subject of future work.
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