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Introduction: Impact cratering is the most com-

mon geological process occurring in solar system, and 
it is used to estimate the ages of surfaces that have 
never been sampled and, thus, cannot be isotopically 
dated [1, 2]. In particular, densities of superposed cra-
ters are used to model crater ages in [3], however this 
is determined using a database of manually catalogued 
craters. Currently, the smallest craters recorded in the 
available databases are around 1km in diameter [2]. 

The resolution of images of the surface of Mars has 
increased by orders of magnitudes with recent orbiters. 
Cameras on board Mars Express (HRSC) and Mars 
Reconnaissance Orbiter (HiRISE) are mapping the 
surface of Mars at 10’s cm/pixel [4,5] (compared with 
Viking orbiter data at 150-300 m/pixel). There are 
>35,000 images at this resolution. This is an unprece-
dented amount of data. We can now see craters on 
Mars meters in diameter. There is the potential here to 
determine surface ages at extremely high resolution. 
The primary obstacle is data reduction. A combination 
of these data will provide an opportunity to count cra-
ters down to sub-km sizes, giving unprecedented preci-
sion for ages of the surface features on Mars. 

With smaller crater diameters comes an increase in 
frequency and consequently a significant increase in 
time required to identify such geological features, ren-
dering the process impractical for surveys covering 
large surface areas. Thus there is a need for a system 
which can identify sub-km impacts automatically. 

The potential of Crater Detection Algorithms 
(CDAs) and other automated approaches is huge [], but 
the main obstacle to general implementation is access 
to High Performance Computing. One study exploring 
automated crater counting reported a modest rate of 
93µs/pixel on a dual Xeon processor workstation [6]. 
The tested CDA had reasonable performance (a report-
ed detection rate of 70% [6]). For a single Mars Ex-
press HRSC image, with pixel dimensions of 11211 x 
47509, this translates to ~14 hrs of desktop processing 
time, while a single high-resolution HiRISE image 
(with pixel dimensions 19582 x 67489) took 34hrs. 
There are >31,000 HiRISE images. What is required is 
access to a supercomputing facility.  

The Square Kilometre Array (SKA) project coming 
to Western Australia has accelerated the development 
of supercomputing facilities such as iVEC’s Pawsey 
Centre, which now includes the petascale supercom-

puter Magnus. There is a mandated 25% allocation for 
geoscience computing projects, which will provide the 
opportunity for applying the appropriate supercompu-
ting resources this project, and its future work, require. 

We report here on progress made so far in develop-
ing an automated system using a Hough Transform 
(HT) combined with Canny edge detection, with initial 
tests performed on HRSC images. Our approach also 
allows large scale automation of the work-flow in a 
parallel supercomputing environment. 

Method: We extracted 15 regions of interest 
(ROI), each 2598 by 2664 pixels, from 5 HRSC imag-
es (h8304_0000, h0466_0000, h2530_0001, 
h9615_0000, and h7347_0000 [5, 7]) for our initial test 
data set. For each of these, craters >5 pixel radius were 
identified by visual inspection.  

To test the performance of the automation algo-
rithm requires a classification system that encapsulates 
a positive/negative test. Difficulty arises when attempt-
ing to test the outcomes True Positive (TP), False Posi-
tive (FP), False Negative (FN) and True Negative 
(TN). For example, one method may check for TPs, 
FPs, and FNs by comparing ground truth data with 
detection data. Defining a TN is more difficult, how-
ever, since every pixel in an image is a candidate for a 
crater center. 

An alternative method to test the HT’s performance 
is based on a set of candidate windows which have 
been manually classified as either positive or negative; 
they either contain a crater, or they do not. The evalua-
tion of the classification system follows naturally. 

Results: Performance of the HT was measured us-
ing a Receiver Operating Characteristic (ROC) curve 
(Figure 1). The x-axis represents the False Positive 
Rate (FPR), while the y-axis is the True Positive Rate 
(TPR). These metrics are similar to those used in [8], 
however we include the TN quantification. 

The curve in Fig. 1 is parametric, with each point 
being representative of the performance at some vary-
ing sensitivity parameter within the edge detection 
scheme. The shape of an ROC curve is indicative of 
the detection algorithm’s performance. Ideally, an 
ROC curve will include points (0, 0) for the lowest 
sensitivity parameter, (1, 1) for the highest (i.e. detect 
everything) and (0, 1) for some optimal parameter val-
ue. 
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Three sets of results were compared using ROC 
curves (Figure 1). Each curve represents different pa-
rameters used by the edge detection. By comparing 
these curves, we can infer whether and how much the 
edge detection or the HT’s influences the algorithms 
performance. The detection performance using param-
eters from blue curve is illustrated in Figure 2. 

The conclusion from Figure 1 is that the TPR can 
be increased with a higher amount of edge data. How-
ever, since decreasing the parameters for the edge de-
tection increases the edge data uniformly across the 
image, we see a rise in FPR. This implies that an in-
crease in edge data only around craters would be best. 

Discussion and Future Work: An improvement to 
the edge detection stage under evaluation involves 
calculating image gradients in the direction of the solar 
azimuth angle (available from image metadata). This 
approach is expected to improve the performance of 
the edge detection stage since the visual features asso-
ciated with craters are most often due to shadows and 
highlights, and hence typically perpendicular to the 
solar azimuth. 

Currently the convolution kernels used for the sun 
direction gradient edge detection are only representa-
tive of north, south, east, west, and their combinatorial 
counterparts (e.g. north-east, south-east etc.). It will be 
possible to improve on this discretization once the 
metadata of HiRISE images are considered, since the 
sun direction can be calculated more precisely. This 
also makes it possible for the process to be automated. 

Further developments will explore using the Hough 
Transform approach with suitably low thresholds as a 
prefilter for selecting candidate crater windows for a 
second stage, involving a Support Vector Machine or 
Neural Network. 

The progress so far leaves the detection phase as 
completely automated. However, as of yet there have 
been no optimizations made or attempts to parallelize 
the algorithms or workflow. Due to the volume of data 
we anticipate processing, access to a supercomputing 
system will provide the opportunity to analyse more of 
it concurrently, and make processing of a large scale 
area practical. In addition, the algorithms offer them-
selves to parallelization. For example, the general HT 
may vote in the accumulator space at different radii in 
parallel, since each radius’ voting space is independ-
ent. This too will be explored in future work. 
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Figure 1. ROC curves for different edge detection pa-
rameters.  The blue line represents the best response for 
crater detection. 

Figure 2. HRSC  image  with  
in  
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