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Introduction:  Still, a conclusive and astrophysi-

cally consistent chondrule formation scenario remains 
elusive. Major constraints include chemical, isotopic 
and textural features of chondrules, in particular re-
tained metal abundances, bulk Fe/Mg ratios, porphyrit-
ic textures and the intra-chondrite chemical diversity. 
Here, we suggest a new coupled evolution-collision 
scenario where chondrules originate from the collision 
aftermath of low-mass planetesimals, which are only 
partially molten from aluminum-26 decay. The model 
is consistent with the vast majority of thermal and 
chemical constraints and invokes a diversity of pre-
chondrule material compositions. The thermo-
mechanical ‘Goldilocks’ regime favored in our scenar-
io constrains the timing and formation conditions of 
the earliest planetesimal families and thus the onset of 
terrestrial planet formation.  

 

Metal-silicate segregation constrains impact 
splash models: Asphaug and co-workers [1] revived 
collision models by suggesting that chondrules may 
originate from low-velocity impacts among fully mol-
ten planetesimals. In Figure 1 we show, however, that 
the ubiquity of Fe-Ni metal rings/blebs [2] in the direct 
vicinity of chondrules and their chemical heterogeneity 
rule out excessively molten (and thus differentiated) 
planetesimals as chondrule precursors. 

 

 
Figure 1: Metal droplets cannot be suspended in plan-
etesimals with vigorously convecting magma oceans. 
The likely metal droplet sizes for various planetesimal 
radii and silicate melt fractions j [‘stability’, 3] in a 
magma ocean is shown versus the droplet sizes which 

can be suspended in liquid magma by convection 
(‘suspension’). 
 

Mutual collisions between radiogenically pre-
heated, but undifferentiated, planetesimals: Plane-
tesimals of preferentially low-mass, however, were 
significantly pre-heated but did not differentiate exten-
sively (Figure 2). They allow chondrule formation 
from subsonic (~1 km/s) impacts, which are chemical-
ly, isotopically and texturally consistent with observa-
tions, and fit well to recent dynamical models of planet 
formation [5, 6].   
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Figure 2: Suggested ‘Goldilocks’ regime for chon-
drule precursor planetesimals (green). Red scenarios 
are either chemically, texturally or isotopically incon-
sistent with laboratory measurements [2, 7] or dynam-
ical models [1, 2, 5]. 
 

Repeated collisional recycling in separate annuli: If 
different parent bodies accreted from isolated feeding 
zones without mutual mixing, chondrule-matrix com-
plementarity [2] and distinct nucleosynthetic anomalies 
in individual chondrules can be retained. 
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