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Introduction:  More than 125 years of study of si-

liceous hot-spring sedimentary facies since Weed’s 
insightful observations on “algous vegetation” in sinter 
at Yellowstone National Park [1] has illuminated a 
variety of deposit geometries and macro- and micro-
textures, most microbial in origin [2-5]. The microbial 
fabrics entombed in sinter are controlled by tempera-
ture, pH and physico-chemical parameters operating 
along environmental gradients in any given geothermal 
system [2,3]. Many of these textures can be recognized 
in the geologic record [5-8], in some cases as far back 
as 3.48 billion years to the earliest signs of life on 
Earth [9]. Early silicification is paramount for preserv-
ing high-quality biosignatures in ancient hydrothermal 
settings [10]. One recurring sinter facies resembles 
siliceous nodules at Columbia Hills on Mars [11], and 
thus warrants more detailed comparative study.  

Sinter Preservation and Facies on Earth and 
Mars(?):  Alkali chloride thermal waters of nearly 
neutral pH tend to precipitate the thickest stratiform 
deposits (dm’s to 10’s of m’s). This geometry implies 
high fluid volumes and/or systems that were active 
over long durations [12]. Acid-sulfate-chloride springs 
precipitate thin sinters (few cm’s to dm thick) [13] 
with distinctive fabric types [14]. Aridity may strongly 
dictate the amount and distribution of precipitated sili-
ca. Sinters are rare in rocks older than Cenozoic age, 
being best represented in subsiding basins during the 
waning stages of regional volcanism [5]. On Earth, all 
old and some young sinters have diagenetically trans-
formed from amorphous opal to micro- or mesocrystal-
line quartz. In contrast, the inferred sinters at Colum-
bia Hills remain opaline, indicating a lack of diagene-
sis [11].  Because of this history, Mars may be the best 
place in the Solar System to preserve ancient biosigna-
tures, if ever they were present [15,16].  

In New Zealand, sheet channel-flow areas bathed 
by warm (~40-60°C) discharge from acidic or neutral 
pH springs commonly form digitate knobby to spicular 
textures that are broadly similar in morphology at the 
macro-scale, and which may be compared to features 
in the Columbia Hills siliceous nodular deposits 
[11,19]. The terrestrial examples invariably develop by 
evaporative wicking and silicification of microbial 

communities situated at the air-water interface, grow-
ing thin (<3 cm) microstromatolites on pumiceous 
clasts or sediments that are slightly elevated above the 
steaming, sluggish (≤0.5m/sec), thin (mm’s to 1-2 cm) 
water layer [14]. More detailed analysis of these fea-
tures is needed to differentiate environmental controls 
on the range in style of their micro-digitate morpholo-
gies.  

Sinter Biosignatures: Following the paragenesis 
and diagenesis of recurring microbial fabrics in sinters 
of different ages enables an understanding of the fate 
of biosignatures through time. Over >3 billion years of 
geologic history of geothermal settings suggests that 
the most robust biosignatures are preserved as silici-
fied macro- and micro-textures, with laser micro-
Raman analysis providing additional important charac-
terization of carbonaceous material, its mineralogic 
replacement by iron or titanium oxide minerals, and 
fingerprinting of the enclosing hydrothermal minerals 
[10]. Lipid biomarkers, while preserved in some Qua-
ternary sinters [17], thus far do not extend meaningful-
ly into the deeper time record we have studied [18].  
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