Thursday, April 27, 2017 SOLAR SYSTEM SITES: EARTH IN TIME/DEEP BIOSPHERE: SUSTAINED HABITABILITY, LIFE, AND THE BIOSIGNATURES OF A DYNAMIC EARLY EARTH II 1:30 p.m. Arizona Ballroom D

Chairs:	Chris Reinhard Charles Diamond
1:30 p.m.	Romaniello S. J. * Zhang F. Algeo T. J. Anbar A. D. <u><i>High-Resolution Reconstruction of Anoxia Across the End-Permian Mass Extinction from Composite Uranium</i></u> <u><i>Isotope Records</i></u> [#3729] We use high-resolution profiles of ²³⁸ U/ ²³⁵ U in marine carbonates to reconstruct the temporal trend and spatial extent of marine anoxia over the EPME.
1:45 p.m.	Mansor M. * Macalady J. L. Fantle M. S. <u><i>Quantitative Constraint on Molybdenum-Nitrogen Co-Limitation in the Proterozoic Ocean</i> [#3285] [Mo(aq)] in the Proterozoic, reconstructed from pyrite-Mo, suggest values >5 nM. This suggests that eukaryotic development was not Mo-N co-limited at that time.</u>
2:00 p.m.	 Kipp M. A. * Stücken E. E. Buick R. Bekker A. <u>A Quantitative Framework for the Interpretation of Nitrogen Isotope Data in Ancient Marine</u> <u>Sedimentary Rocks</u> [#3471] Here we use the record of nitrogen isotope ratios in marine sedimentary rocks to quantify the prevalence of nitrogen-fixing organisms through Earth's history.
2:15 p.m.	Castleberry P. R. * Romaniello S. J. Anbar A. D. <u>The Possible Photochemical Origins of Banded Iron Formations</u> [#3528] We tested the theory that Fe photooxidation could deposit BIFs. We find photooxidation could contribute to, but likely not be completely responsible for, BIFs.
2:30 p.m.	Krissansen-Totton J. * Olson S. Catling D. C. <u>Atmospheric Disequilibrium Biosignatures on Earth Through Time</u> [#3104] Earth's atmosphere may have been in chemical disequilibrium since 3.5 Ga due to the presence of life. This disequilibrium was potentially remotely detectable.
2:45 p.m.	Ozaki K. * Tajika E. Reinhard C. T. <u>Limited O₂ Production in the Mid-Proterozoic Oceans</u> [# 3121] Numerical model constrained by geological records suggests that O ₂ production rate in the mid-Proteorozic oceans were a factor of two below the modern ocean.
3:00 p.m.	 Planavsky N. P. * Cole D. B. Reinhard C. T. Lyons T. W. <u>Mid-Proterozoic Records of Atmospheric Oxygen</u> [#3333] We will present a critical review of currently utilized pO₂ toolkit and explore the history of atmospheric biosignatures on Earth.
3:15 p.m.	Johnson B. W. * Goldblatt C. <u>Earth System Nitrogen Cycle Through Time: Interactions Between Biology, Plate Tectonics, and the</u> <u>Atmosphere with Implications for Planetary Habitability and Nutrient cycles</u> [#3636] We present an Earth system N-cycle model that simulates N transport between Earth's reservoirs (atmosphere, crust, mantle) over time mediated by biology.
3:30 p.m.	Goldblatt C. * Dewey M. Johnson B. W. <u>Nitrogen, an Equivocator to Climate</u> [#3681] Changing the nitrogen inventory may warm or cool a planet, by pressure broadening and Rayleigh scattering. There is also fun to be had with other N species.

3:45 p.m. Coffee Break