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Abstract:  The cellular environments in which RNA 
functions in contemporary biology are characterized by 
extensive macromolecular crowding which is a feature 
likely shared by protocelluar life and by the environ-
ments of prebiotic synthesis from which life emerged. 
Molecular crowding encompases a complex set of ef-
fects such as excluded volume effects through steric 
hindrance1, modulation of chemical interactions2, and 
alteration of structure and activity of water3-5.  The 
excluded volume effects are thought to favor compact 
molecular states6 and foster improved native state fold-
ing of biopolymers7,8. Moreover, crowding can have 
varying impacts on reaction rates1, by increasing them 
or decreasing them9,10, depending on the dominant 
catalytic mechanism. Despite the importance of crowd-
ing, this environmental parameter has not been ex-
plored through in vitro evolution.  

 
We investigated the effects of molecular crowding 

on evolution of ligase ribozymes. We evolved popula-
tions of ligase ribozymes in dilute and crowded buff-
ered solutions. After 5 rounds of evolution, populations 
were randomly mutagenized. The desired level of mu-
tagenesis was confirmed by a decrease in population 
activity. The populations were evolved for additional 
three rounds in buffer, 20% Dextran 6000 and 20% 
PEG 8000. These populations were sequenced through 
high throughput sequencing (HTS). 

 
We find that populations evolved in uncrowded so-

lutions have the highest levels of activity, which is 
inhibited by addition of PEG. PEG-evolved popula-
tions are indiscriminant with respect to crowding. 
Comparison of sequence abundance between popula-
tions evolved in buffer and PEG suggests that crowd-
ing has a moderate effect on evolution of RNA ligases. 
Among the most abundant sequences, all have a dis-
tinct preference for a particular environment, although 
none show a difference in abundance larger than two 
orders of magnitude. 

 
Several proposed secondary structures have been 

determined, including very short motifs (<20 nt). Buff-
er and Dextran populations are represented by similar 
sequences and secondary structures, whereas the PEG-
population is dominated by a single ribozyme. We 
assayed individual ribozyme sequences for activity. 
The highest levels of activity are observed in buffered 
solutions, followed by Dextran, with PEG-assays 
showing the lowest levels of activity. Only one ribo-

zyme (a representative of a short motif) shows in-
creased activity in the presence of PEG. The effects of 
different crowding agents on evolution of ligase ribo-
zymes will be discussed.  
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