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Introduction:  For the first two billion years of life 

on earth, biopolymers inhabited anoxic environments 
with abundant and benign Fe2+. The geologic record 
indicates that early oceans contained vast quantities of 
soluble Fe2+. Before the GOE, the reducing atmosphere 
would have attenuated Fe2+-mediated oxidative pro-
cesses such as Fenton chemistry [1, 2].  

The GOE precipitated global shifts in biochemistry 
and microbiology, eventually producing the modern 
condition of iron scarcity and iron-mediated oxidative 
damage to biological systems [3]. It has been shown 
that the GOE drove substitution of copper, zinc, man-
ganese and other metals for iron in protein enzymes [4-
11] as well as tight cellular regulation of iron locations 
and concentrations [12]. The ubiquity of iron in extant 
biological systems emphasizes this element’s catalytic 
utility and significance through evolutionary history. 

We hypothesize that Fe2+ was a cofactor for nucleic 
acids and proteins during the origins of life when iron 
was abundant, and was substantially replaced by Mg2+ 
during the GOE. For RNAs, we observe that replace-
ment of Mg2+ by Fe2+ in vitro improves and expands 
functional capabilities, enabling redox-activity. The 
nucleic acid processing proteins ligase and polymeras-
es use Mg2+ to catalyze formation of the phophodiester 
bond joining adjacent nucleotides. In a generally ac-
cepted mechanism, Mg2+ cations stabilitize the 5’ 
phosphate(s) of an incoming nucleotide and activate 
the 3’ hydroxyl of an existing nucleic acid polymer for 
nucleophilic attack [13-19], facilitating subsequent 
bond formation.  

We present evidence to suggest that Fe2+ was an 
ancestral cofactor for protein-based enzymes that pro-
cess nucleic acids.  

Model and Hypothesis: The GOE drove 
Fe2+®Mg2+ substitutions in essential nucleic acid pro-
cessing enzymes.  

Results: Iron was substituted for Mg2+ in ligase 
and polymerase reactions performed under anoxic 
conditions. We demonstrate by experiment and sup-
porting calculations that Fe2+ can indeed substitute for 

 
Mg2+ in the catalytic function of these enzymes in 
vitro.  

We propose that the rise of O2 on Earth drove a 
Fe2+ to Mg2+ substitution in proteins as well as nucleic 
acids [20, 21], a hypothesis consistent with a general 
model in which some modern biochemical systems 
retain latent abilities to revert to primordial Fe2+-based 
states under pre-GOE conditions. 
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