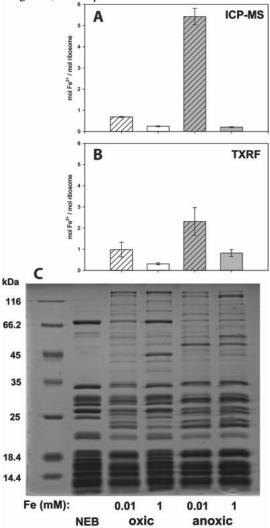
Bacterial Ribosomes Incorporate Iron Under Pre-GOE Conditions. M. S. Bray¹, C. M. Albalate², E. B. O'Neill^{1,2}, A. R. Reddi², P. L. Morton³, J. B. Glass^{4*}, L. D. Williams^{2*}. ¹School of Biology, Georgia Institute of Technology, Atlanta, GA, USA *Jennifer.Glass@eas.gatech.edu; Loren.Williams@chemistry.gatech.edu, ¹School of Biology, ²School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA, ³Geochemistry, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, ⁴School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA


Hypothesis: Divalent ions are essential for nucleic acid function during replication, transcription and translation. Although modern nucleic acids associate with Mg^{2+} , we hypothesize that Fe^{2+} was their original cofactor, with Mg^{2+} fully or partially replacing Fe^{2+} when seawater Fe^{2+} levels fell after the Great Oxidation Event (GOE; 2.4 Ga). In the ribosome, deeply buried divalent cations can be traced to the origin of life. Because the ribosome evolved under anoxic, Fe^{2+} -rich ("pre-GOE") conditions, and Fe^{2+} catalyzes RNA folding and catalysis *in vitro* [1, 2], we hypothesize that extant ribosomes retain the *in vivo* capacity to bind and function with Fe^{2+} under pre-GOE conditions.

Methods: *Escherichia coli* K12 cells were grown with and without oxygen with 0.01 mM ("low") and 1 mM ("high") Fe²⁺. Cell growth was measured by OD₆₀₀. At the transition from log to stationary growth phase, cells were harvested, washed, and lysed in 1 mM Mg²⁺ buffer. Ribosomes were isolated by chromatography [3] and quantified by A₂₆₀. The metal content of purified ribosomes was measured by inductively coupled plasma mass spectrometry (ICP-MS) and total reflection xray fluorescence (TXRF). Ribosomal proteins were analyzed by SDS-PAGE.

Growth rates: The doubling time of *E. coli* was identical at low and high Fe^{2+} (oxic: 0.5 $\text{OD}_{600} \text{ hr}^{-1}$; anoxic: 0.4 $\text{OD}_{600} \text{ hr}^{-1}$), suggesting that ribosomal function is basically equivalent regardless of Fe^{2+} availability in the growth medium.

Ribosomal iron content: Both ICP-MS (**Fig. 1A**) and TXRF (**Fig. 1B**) data showed that ribosomes isolated from cells grown under pre-GOE conditions contained significantly more Fe (~2 Fe²⁺ mol⁻¹ ribosome by TXRF and ~6 Fe²⁺ mol⁻¹ ribosome by ICP-MS) than cells grown in the presence of O₂ with low or high Fe (<1 Fe²⁺ mol⁻¹ ribosome), consistent with our previous identification of eight tightly-bound divalent metal cations per ribosome based on structural modeling [2]. These Fe²⁺ ions must be tightly-bound and long-lived because repeated Mg²⁺ washes did not displace them.

Ribosomal proteins: SDS-PAGE of the same ribosomes analyzed for Fe content showed similar banding patterns as highly purified ribosomes (**Fig. 1C**). Additional bands likely represent tightly-bound, ribosomeassociated proteins. Differences in banding patterns between the four treatments suggest that O_2 and Fe²⁺ affect ribosomal protein expression and/or folding. **Evolutionary implications:** These findings support our hypothesis that extant ribosomes retain the ability to incorporate and function with Fe^{2+} *in vivo* (e.g. maintain the same growth rates as cells with ribosomes lacking Fe^{2+}) under pre-GOE conditions.

Fig. 1. Purified *E. coli* ribosomal Fe content determined by (A) ICP-MS and (B) TXRF. (C) SDS-PAGE protein gel for the four growth conditions. NEB refers to commercially purified ribosomes.

References: [1] Athavale S. S. et al. (2012) *PLoS One*, 7, e38024. [2] Hsiao C. et al. (2013) *Nature Chem. 5*, 525-528. [3] Maguire, B. A. (2008) *RNA*, 14, 188-195.