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Background: Microbial manganese (Mn) cycling
in marine and freshwater environments is generally
assumed to consist of Mn®" oxidation in oxic water
columns and Mn(IV) oxide reduction in anoxic sedi-
ments [/] as the only two bioavailable Mn redox spe-
cies. This dogma was recently overturned with the
discovery that soluble Mn®>" dominates the soluble Mn
pool at uM concentrations in suboxic environments
[2]. Although Mn®" is soluble, electron transport and
protein secretion pathways involved in extracellular
metal reduction are required for it to be used as an
electron acceptor [3]. Acetate is the most abundant
volatile fatty acid fueling Mn reduction in aquatic en-
vironments and is also one of the primordial organic
carbon substrates for microbial life. Although bio-
chemical pathways for anaerobic acetate oxidation
have been studied for decades in methanogenic archaea
and sulfate reducing bacteria, little is known about
metal-reducing acetate oxidizers.

Methods: Anoxic enrichment cultures were estab-
lished by inoculating a layer of suboxic Mn**-rich salt
marsh sediment into sulfate-free media with soluble
Mn” -pyrophosphate and acetate. Mn®* reduction was
monitored spectrophotometrically by absorbance at
480 nm. Samples for carbon isotopic analysis of total
dissolved inorganic carbon (8"°C-DIC) were analyzed
by liquid chromatography-isotope ratio mass spec-
trometry (LC-IRMS). Whole genome sequences were
compared using RAST together with KEGG, BioCyc,
and NCBI databases for protein sequence similarity
and domain analysis.

Findings: We isolated Shewanella strain MN-01
with 98% average nucleotide identity to S. algae and S.
haliotis, members of a genus previously considered
unable to oxidize acetate anaerobically. Strain MN-01
was able to oxidize acetate coupled to reduction of
either soluble Mn’* or Fe*', confirmed via ’DIC pro-
duction from "*C1- and C2-labeled acetate. Other S.
algae strains were also capable of Mn®" reduction with
acetate, thus expanding the ecological niche of the
Shewanella genus. Genomic comparisons among ace-
tate-oxidizing and non-oxidizing Shewanella spp. re-
vealed four distinct enzymes (aconitate hydratase 2
(AcnA), succinate semialdehyde dehydrogenase, and
two NADPH:quinone oxidoreductases) present only in
acetate-oxidizing strains, which may allow metal-
reducing Gammaproteobacteria to use the hetero-
trophic, oxygen-tolerant TCA cycle (hnTCA) anaerobi-
cally whereas Deltaproteobacteria use the reductive,
oxygen-sensitive TCA (rTCA) cycle.
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Implications: The ability of Shewanella to oxidize
acetate using the hTCA cycle has evolutionary impli-
cations for the emergence of metal reduction in Prote-
obacteria. Deep phylogenetic origins of metal-reducing
microbes support an early origin for Mn respiration,
consistent with geological evidence for microbial Mn
oxides as early as 2.9 Ga [4]. We propose that the en-
zymatic machinery for acetate oxidation coupled to
metal reduction evolved under different oxygen re-
gimes: (1) anaerobic Deltaproteobacteria (e.g. Geobac-
ter) evolved metal reduction first under anoxic condi-
tions by retaining the oxygen-sensitive enzymes of the
rTCA cycle; (2) after Cyanobacteria began producing
significant oxygen in the photic zone, facultative an-
aerobic Gammaproteobacteria (e.g. Shewanella)
evolved metal reduction using the less oxygen sensi-
tive hTCA cycle.
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