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Introduction:  Biological patterns are common, 

but some are particularly striking and appear as if 
drawn. In some resource constrained environments, 
biological systems form patterns which may serve to 
optimize their return on the effort to acquire the 
needed resources [1]. This is particularly noticeable in 
caves, where communities of microbes form distinc-
tive and recognizable patterned mats or thin films on 
surfaces, which are called biovermiculations for their 
worm-like or hieroglyphics-like appearance. These 
patterns persist over time, partly because cave envi-
ronments are not perturbed by surface weather, and 
some only rarely by events like flooding or animal 
activities, and some microbial activities result in ongo-
ing mineralization of patterns.  Thus, such patterns can 
provide evidence of life even when the microbial 
activities may have  l o n g  c eased.  

 Model Genereration:  Models are usually gener-
ated and tuned by experts to mimic the patterns ob-
served in nature. To extend these tools in a practical 
fashion to the search for life on Mars or other astrobi-
ology targets, requires an inversion of this approach. 
Namely, images from rovers or other exploration craft 
must be used to automatically generate models to ana-
lyze the potential that life either still is or at one time 
was present. Using imaging to pre-screen test sites can 
provide a huge advantage, given the limited number of 
available chemical or physical tests that a rover can do. 
Each image can be treated as a cellular automaton 
(CA) state, then the inverse problem must be solved to 
determine the rules that generated it. This is an ex-
tremely difficult problem, since, in general, it is not 
actually possible. This issue could be addressed by 
using time series data [2], but that is often not availa-
ble. We only restrict the type of CA to the “potential 
well” models of [1] then use a swarm algorithm to 
determine the rules with only one state/picture. 

Particle Swarm:  A particle swarm is an optimiza-
tion algorithm in which a large number of guesses 
(dubed particles) are tried and modified.  The particles 
have a location (the guess) and a velocity (how to 
modify the guess), which are modified by the behavior 
of the swarm adapting to the environment (what you 
are optimizing).  The entire algorithm is described in 
[3], but is summarized  for our case by  
1. Initialize particles with random rules. 
2. Simulate rules and compare to target  (fitness). 

3. Calculate  a  velocity  for  each  particle  based on 
the comparison, and both the swarm’s  and that 
particle’s best guesses so far. 

4. Update the position of each particle, using it’s 
current position and velocity. 

5. Go back to step 2 and iterate until criteria is met. 
Results:  Simulated patterns were generated so 

the true ruleset could be used to test the accuracy of 
the method. After 20 iterations of the swarm, we con-
sistently obtained good rule sets that had parameters 
within 2-5% of the original rule set as long as there are 
sufficient data in the region, i.e. if you have a high 
density pattern you will get rules governing how the 
unknown organism behaves in high density situations 
but not necessarily how it would behave in low density 
situations.  Figure 1 shows a target pattern from the 
rule [0.2,0.25,0.3,0.35,0.5,0.55,0.6,0.65].  Note that 
the pattern has mostly red (maximum biomass per cell) 
or blue (no biomass in cell).  Density is calculated by 
averaging all nearby cells up to a set range and 
grouped by dead centers (middle cell is blue) and live 
centers (middle cell is not blue).  The target density 
plot in Figure 2 shows that we have more data on the 
denser part of the graph (higher probabilities on the 
right)  so these are the rules we best obtain.  After 20 
iterations, the best resulting pattern in Figure 3, is re-
markably similar.  The estimated rule, [0.24,0.416, 
0.429,0.433,0.467,0.546,0.595,0.629], is a good fit for 
the four larger numbers (high density) consistent with 
our prediction based on density plots. 

Figure 1.  
Target Pattern 

 

Figure 2. Target Densities 
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Figure 3.  
Result Pattern 
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