EFFECT OF TUBE-BASED X-RAY MICROTOMOGRAPHY IMAGING ON THE AMINO ACID CONTENT OF THE MURCHISON CM2 CHONDRITE. H. L. McLain^{1,2}, D. P. Glavin¹, J. C. Aponte^{1,2}, J. P. Dworkin¹, J. M. Friedrich^{3,4}, D. S. Ebel³, M. Hill³, and H. Towbin³. ¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, e-mail: daniel.p.glavin@nasa.gov. ²Catholic University of America, Washington DC 20064. ³American Museum of Natural History, New York, NY 10024. ⁴Fordham University, Bronx, NY 10458.

Introduction: X-ray and synchrotron x-ray microcomputed tomography (μ CT) are increasingly being used for three dimensional reconnaissance imaging of chondrites and returned extraterrestrial material prior to detailed chemical and mineralogical analyses [1,2]. Although μ CT imaging is generally considered to be a non-destructive technique since silicate and metallic minerals in chondrites are not affected by x-ray exposures at the intensities and wavelengths typically used, there are concerns that the use of µCT could be detrimental to the organic molecules in carbonaceous chondrites. A recent study of Murchison CM2 samples exposed to a total of ~ 1 kGy monochromatic 45 keV synchrotron radiation found that there were no detectable changes in the amino acid abundances [3]. In this work, three separate uCT examinations of the Murchison meteorite using the GE Phoenix v|tome|x s 240 nanofocus high resolution bremstrahlung x-ray tube instrument at the American Museum of Natural History (AMNH) were conducted and the amino acid abundances and enantiomeric compositions were quantified. Lower energy bremsstrahlung x-rays could interact more with amino acids in meteorites.

Materials and Methods: Four separate aliquots (~ 0.5 g each) of homogenized Murchison meteorite powder were transferred to individual borosilicate glass screw capped vials and sealed in air for the x-ray imaging experiments.

The vials were sent to ANMH and three were exposed to x-rays generated with a tube potential of 180 keV and 120 μ A current. The x-ray 1 and 2 samples were exposed to the beam for a similar duration (~43 min). Between these, we changed the experimental conditions to study the effects of adding a copper filter (x-ray 2) and increasing the exposure duration (x-ray 3) well beyond what is typically used for x-ray microtomography imaging experiments (459 min.).

Following the x-ray imaging experiments at ANMH, all four vials were returned to NASA GSFC and a portion of each sample was extracted at 100°C for 24 h. After hot-water treatment, half of the water extract was desalted by cation exchange chromatography and the NH₄OH eluate derivatized by *o*-phthaldialdehyde/N-acetyl-L-cysteine (OPA/NAC) and analyzed for amino acids by ultrahigh

performance liquid chromatography with UV fluorescence and time of flight mass spectrometry detection (LC-FD/ToF-MS) as described previously [4]. The other half of the water supernatant was acidified with 100 μ l 6M HCl, concentrated by drying under vacuum and then analyzed by OPA/NAC derivatization and LC-FD/ToF-MS.

Results and Discussion: The abundances of D.Laspartic and glutamic acids, D,L-serine, D,Lthreonine, glycine, D,L-alanine, β -alanine, D,L- α -, D.L-6-. and γ -amino-*n*-butvric acid. αaminoisobutyric acid, D,L-valine, D,L-isovaline and ε-amino-*n*-caproic acid in the hot-water extracts were determined and the total amino acid abundances in the x-ray irradiated samples relative to the control. We observed no change in the total amino acid concentrations or D/L ratios (Table 1) in the Murchison extracts after x-ray irradiation within analytical errors. These results are consistent with our previous study [1].

Table 2. Amino acid enantiomeric ratios (D/L) measured in the hot-water extracts of the control and x-ray exposed Murchison meteorite samples.

Amino Acid	Control (D/L)	X-ray 1 (D/L)	X-ray 2 (D/L)	X-ray 3 (D/L)
Asp	0.56 ± 0.15	0.56 ± 0.09	0.54 ± 0.11	0.60 ± 0.15
Glu	0.69 ± 0.17	0.69 ± 0.15	0.61 ± 0.10	0.75 ± 0.08
Ala	1.03 ± 0.11	1.02 ± 0.13	0.99 ± 0.06	1.07 ± 0.08
Iva	0.85 ± 0.06	0.86 ± 0.07	0.85 ± 0.05	0.93 ± 0.07

Conclusions: Tube-based x-ray microtomography imaging tested under a variety of experimental conditions has no measurable effect on the amino acid content of the CM chondrite Murchison. These data provide some confidence in the use of μ CT and similar non-invasive methods for amino acid analysis of returned samples from OSIRIS-REx and Hayabusa2.

References: [1] Ebel D. S. and Rivers M. L. (2007) *Meteorit. Planet. Sci.* 42: 1627-1646. [2] Tsuchiyama et al. (2011) *Science* 333: 1125-1128. [3] Friedrich J. M. et al.(2016) *Meteorit. Planet. Sci.* 51: 429-437. [4] Glavin D. P. et al. (2010) *Meteorit. Planet. Sci.* 45: 1948-1942. [5] Cody G. D. and Alexander C. M. O'D. (2005) *Geochim. Cosmochim. Acta* 69: 1085-1097.