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The early Palaeoproterozoic oxygenation of Earth’s 

surficial environment fundamentally altered the chem-
istry and ecological structure of our planet—Rendering 
Earth an, as yet, unique planet, whilst “lighting” the 
fuse for the emergence of micro- and macroscopic life. 
Based on numerous geological and geochemical argu-
ments, it is widely believed that Archaean atmospheric 
O2 was low (< 10-5 present atmospheric level; PAL), 
rising irreversibly to a fraction of present-day levels 
during the Great Oxidation Event [1]. Recently, how-
ever, this canonical view of planetary oxygenation has 
been questioned by analyses of ~3.0–2.5 billion-year-
old (Ga) sediments, which have been interpreted to 
reflect transient or localized oxygenation [e.g., 2, 3] as 
well as periods of more reduced atmospheric composi-
tion directly prior to the GOE [4, 5]. Assimilated these 
studies hint at a complex atmospheric evolution that 
we are only beginning to comprehend.  

Despite the hypothetically multifaceted atmospher-
ic evolution, the emerging picture is obstructed be-
cause most geochemical proxies record oceanic condi-
tions that are only indirectly tied to the atmosphere via 
differing, and often unknown, sensitivities. Fortunate-
ly, the sedimentary S-isotope record is implicitly 
linked to the redox state of the atmosphere in multiple 
ways [e.g., 6]: 

1. Shortwave UV photolysis (λ = 180–220 nm) 
of SO2 has been shown to produce S-MIF re-
quiring the absence of an atmospheric 
O2/O3 photon filter. 

2. Atmospheric export of S-MIF, and its ulti-
mate preservation, requires atmospheric sulfur 
deposition via at least two exit channels, 
which are homogenized at O2 concentrations 
exceeding 10-5 PAL, eliminating the S-MIF 
signal.   

3. Oceanic mixing, against a moderate sulfate 
reservoir, would dilute and eradicate the S- 
MIF signature.   

Consequently, the observed bi-modal operation of sul-
phur isotope fractionation entombed in the geological 
record—shifting from mass independent fractionation 
(MIF; Δ33S and Δ36S ≠ 0) to mass dependent fractiona-
tion (MDF; Δ33S and Δ36S = 0) [7]—is taken as the 

most robust evidence for the rise O2 above 10-5 PAL 
and the straigraphic marker of the GOE.  

Despite the potential diagnosticity of S-isotope 
fractionation, our temporal understanding of the GOE 
has been hindered by the lack of outcrop of the appro-
priate age and a lose chronostratigraphy. Recent work, 
exploiting three cores from the Transvaal Supergroup 
(South Africa), however, has helped to close this 
knowledge gap and now places the GOE stratigraph-
ically in the Upper Duitschland Formation. Further-
more, these records imply the shift in atmospheric 
composition was rapid (1–10 Myr), unidirectional and 
an oxygenated atmosphere was established by 2.33 Ga 
[8].  

In this contribution we seek to test these hypothe-
ses, and refine the findings of Luo et al. [8], reporting 
emerging quadruple S-isotope datasets from four strat-
igraphically equivalent, recently drilled, cores from the 
Transvaal Supergroup (AGP-1, AGP-2, ANW-1 and 
ADL-1). We anticipate that these cores will contain 
continuous GOE expressions, and will yield the high-
est resolution quadruple S-isotope records over this 
critical juncture in Earth History. Forming the back-
bone of the ongoing chemostratigraphy, these cores 
will reveal the rate and structure of planetary oxygena-
tion allowing us to refine and test emerging hypothesis 
concerning the causes and consequences of planetary 
oxygenation.  Ultimately a thorough and complete un-
derstanding of Earth’s oxygenation will help guide our 
search for life in the broader universe.   
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