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Introduction: The Origin of Life is one of the fun-
damental, unsolved riddles of modern science. Life as
we know it is a stunningly complex non-equilibrium
process, keeping its entropy low against the second law
of thermodynamics. Therefore it is straightforward to
argue that first living systems had to start in a natural
non-equilibrium  settings.  Recent  experiments  with
non-equilibrium microsystems suggest that geological
conditions should be able to drive molecular evolution,
i.e. the combined replication and selection of genetic
molecules towards ever increasing complexity.

Non-Equilibrium Settings: As a start, we explored
the  non-equilibrium setting of  natural  thermal  gradi-
ents. Temperature differences across rock fissures ac-
cumulate  small  monomers  more than millionfold [1]
by thermophoresis and convection [2]. Longer mole-
cules are exponentially better accumulated, hyperexpo-
nentially  shifting  the  polymerization  equilibrium  to-
wards long RNA strands [3]. The same setting imple-
ments convective temperature oscillations which over-
come template poisoning and yield length-insensitive,
exponential replication kinetics [4]. Accumulation and
thermally driven replication was demonstrated in the
same chamber, driven by the same temperature gradi-
ent [5]. Protein-free, non-ligating replication schemes
can be driven by thermal convection. For example, the
hairpins of tRNA can be used for reversible codon-se-
quence replication, bridging from replication of genes
to the translation of proteins [6]. Non-templated poly-
merization  and  hybridization-  dependent  degradation
leads to replication-like information transmission [7].
Replication  and  trapping  of  DNA persist  over  long
time  in  a  constant  influx  of  monomers,  closely  ap-
proaching  the  criteria  for  an  autonomous  Darwin
process.

Biotechnology  Spinoff: Experiments  using  non-
equilibrium conditions at the microscale are non-triv-
ial. For example, molecules have to be detected selec-
tively with the most sensitive biochemical, optical and
microfluidic approaches. Advances of biotechnology in
this regime is very fruitful. Our award winning Nan-
oTemper spinoff company, with now more than 70 em-
ployees, demonstrated that basic research for the origin
of life can lead to cutting edge biotechnology [8][9].

Environments: Besides  temperature  gradients,
many more non-equilibrium settings can be imagined
and become  increasingly accessible to experimenta-
tion. For example, geological pH gradients, geological
redox potentials or the optical excitation of geological

nanoparticles  should  drive  metabolic  reactions  in  a
very peculiar way. To be successful, an effort on the
origin of life has to be embedded in a strong and very
active  interdisciplinary  background  of  biology,  bio-
chemistry,  chemistry,  astrogeology and not  the least,
theoretical modeling at various levels of abstraction. 

           

Selection for increasing complexity: The replica-
tion of long nucleic acid sequences was required for
the evolution of biological complexity during the ori-
gin of life; however, short sequences are normally bet-
ter  replicators  than  long ones.  Recently,  we  showed
how a common physical environment provides a sim-
ple mechanism to reverse this trend and enables long
sequences to flourish [10]. On a similar note, the trap
is creating gels from oligonucleotides - and sorts them
in a phase transition with equal  sequence and single
base pair discrimination [11].
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