THE THERMODYNAMICS OF LIFE ON A PLANETARY SCALE. S. D. Domagal-Goldman^{1,2} and S. Som^{2,3,4}, ¹NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt Road, Greenbelt, MD 20771, USA (email: shawn.goldman@nasa.gov), ²Virtual Planetary Laboratory, Seattle, WA 98125, ³Blue Marble Space Institute of Science, Seattle, WA 98019, USA, ⁴NASA Ames Research Center, Moffett Field, CA 94035, USA. It is known that atmospheric methane (CH₄) concentrations could have been much higher on Archean Earth. Because CH₄ is an efficient greenhouse gas, this may have contributed to solutions to the faint young Sun paradox[1]. Additionally, H₂ has been proposed as an important greenhouse gas for Archean Earth [2], early Mars [4], and exoplanets [5]. However, there are previously unconsidered feedbacks in this system. The conversion of H₂ and CO₂ (or CO) to CH₄ by biology is temperature-dependent, because of changes to the Gibb's free energy for CH₄ production from biology, and because the maintenance energy of organisms (the minimum amount of energy required by biology to fix what the environment breaks) is higher at increased temperatures [6]. We will present a study of these feedbacks that leverages a suite of models. Specifically, we couple a thermodynamic model (after 6) to calculate the relationship between surface temperature and biological CH₄ production, a photochemical model (7) to predict the resulting H₂ and CH₄ concentrations, and a climate model (8) to predict the effects of this on surface temperature The ecosystem model is based on the work of Hoehler (6). It utilizes Geochemists' Workbench (9) to compute dissolved equilibrium concentrations of CO₂ and CH₄, which are then diffused into a single-cell bioenergetic model [10]. We use this model to predict the "H₂ demand" of biology to produce a certain amount of CH₄ at a given temperature and dissolved inorganic carbon concentration. The photochemical model is a 1-D code that solves the mass balance equations for 74 species connected by 392 reactions. It predicts the vertical profiles of each species. This model has been previously used to simulate low-02 atmospheres, in particular those of Archean Earth [7]. We use this model to simulate the atmospheric response to biological H₂ demand and CH₄ production. The climate model is a 1-D radiative-convective code (8) that uses k-coefficients to simulate the radiative effects of H₂O, CO₂, and CH₄, and includes absorption cross sections from H₂ and collision-induced features of CO₂. This model predicts surface temperatures, given the atmospheric state from the photochemical model. We will present preliminary results from this model. These will include a study of the strength of the feedbacks between CH₄, temperature, and biological productivity, and identification of stable points in the CH₄/temperature/productivity system, and resulting insights into the climate of Archean Earth. Additionally, we will discuss the implications of these feedbacks for other planets, including ancient Mars and H2-dominated exoplanets. Figure 1. H_2 demand on an ecosystem to maintain different surface CH_4 mixing ratios, as a function of temperature. At higher temperatures, it takes more H_2 to maintain a given CH_4 concentration. This creates stable points in the system (so long as a thick haze is not present). For example, increases to CH_4 concentrations would lead to increased surface temperatures, but that would lead to a lower CH_4 concentration given the H_2 present in the system. References: [1] J. Haqq-Misra, et al. (2008). Astrobiology, 8(6), 1127-1137. [2] Wordsworth & Pierrehumbert (2013). Science, 339(6115), 64-67. [3] Byrne & Goldblatt (2014). Climate of the Past Discussions, 10(3), 2011-2053. [4] Ramirez, et al. (2014). Science, 7(1), 59-63. [5] Pierrehumbert, & Gaidos (2011). The Astrophysical Journal Letters, 734(1), L13. [6] Hoehler, T. M. (2004). Geobiology 2.4 205-215. [7] Zerkle, et al. (2012). Nature Geoscience, 5(5), 359-363. [8] Kopparapu, et al. (2013). The Astrophysical Journal, 765(2), 131. [9] Bethke, C. M. (1994). The geochemist's workbench. University of Illinois. [10] M. J. Alperin and T. M. Hoehler. (2009). American Journal of Science 309.10: 869-957.