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Introduction:  The RNA world hypothesis remains 

one of the most influential theories regarding the origin 

and early evolution of life. Nevertheless, the prebiotic 

synthesis of RNA polymers remains a persistent chal-

lenge to RNA being accepted as a product of prebiotic 

chemistry, as opposed to being a product of chemical 

or biological evolution [1]. 

In an early attempt to synthesize RNA in model 

prebiotic reactions, Orgel and co-workers demonstrat-

ed that adenosine can be formed by drying and heating 

adenine with ribose, but the other canonical nucleobas-

es did not exhibit glycosidic bond formation [2,3]. 

More recently, Powner et al. demonstrated that cytidine 

can be produced by the concerted synthesis of the cyto-

sine base and the ribose sugar, thereby circumventing 

the need for glycosidic bond formation [4,5].  

Considering the possibility that RNA evolved from 

an earlier genetic polymer, Miller and co-workers 

demonstrated that urazole (presented as a potential 

ancestor of uracil) readily forms nucleosides with ri-

bose in good yield [6]. Subsequently, 2-pyrimidinone, 

a base that only differs from uracil and cytosine by one 

exocyclic group, was also shown to form nucleosides 

when dried and heated with ribose [7]. Thus, it appears 

that nucleoside formation might not have been such an 

obstacle in the origin of life if the nucleobases of the 

earliest ancestral polymers of RNA (or proto-RNA) 

were different from those found in RNA today. 

Results:  We are actively investigating the chemi-

cal space around the nucleobases of RNA for heterocy-

cles that might also be amenable to glycosidic bond 

formation in model prebiotic reactions. We have re-

cently discovered the 2,4,6-triaminopyrimidine (TAP) 

will form nucleosides when dried and heated with ri-

bose [8]. Although free ribose exists primarily in its 

hexose form in aqueous solution, it was found that the 

major product of TAP+ribose reactions is a C-

nucleoside with ribose in the -furanose form, which is 

the same form of ribose found in RNA. This major 

product was named TARC. 

The formation of nucleosides by TAP was also in-

triguging because this molecule has long been known 

to form hydrogen-bonded assemblies with cyanuric 

acid and barbituric acid [9,10], two plausible prebiotic 

molecules. Unlike the free bases or mononucleosides 

of RNA, TARC and cyanurinc acid form ordered as-

semblies in water. For example, AFM images of a 

TARC-cyanuric acid sample in a phosphate-borate 

buffer reveals fibers that are up to 1 m in length. Sim-

ilar fibers are also seen when cyanuric acid is mixed 

with the unpurified products of a TAP+ribose reaction 

(Figure 1). 

 

 
Figure 1: AFM topography image of assemblies formed by a 

crude TAP+ribose reaction mixed with cyanuric acid in a 

phosphate-borate buffer. 

 

Our most recent studies have identified additional 

heterocycles that also form nucleosides with ribose in 

model prebiotic reactions. These model proto-

nucleosides self-assemble into fibers that are similar to 

those shown in Figure 1. The charcterization of these 

molecules and their assemblies will be discussed. A 

current goal of this research is to use the preorganiza-

tion provided by the self-assembly of these model pro-

to-nucleosides to facilitate their polmerization into 

model proto-RNA polymers. Progress towards this goal 

will also be discussed. 
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