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Introduction:  Biological evolution is typically de-

picted as a passive process, whereby life is shaped by 
its environment. However, in reality life is strongly 
coupled to its planetary environment: evolution is a 
complex, dynamical process with feedback between 
environment and organisms [1]. Thus, environments 
reflect and record not just geochemical processes, but 
the interaction of biology and geochemistry [2,3]. This 
interplay between life and planetary processes is im-
portant on our own planet, where it has shaped the co-
evolution of life and Earth [4]—and should be equally 
important for extraterrestrial ecosystems. This requires 
deriving insights into universal principles that might 
underlie biological organization within a planetary 
context. 

One feature that holds promise to potentially be a 
universal attribute of biology is network architecture. 
Biological networks studied across a range of length 
and timescales—such as neural networks, gene regula-
tory networks, or cell signaling networks [5-7]—have 
some features in common, including scaling laws for 
the distribution of connectivity of network nodes. Or-
ganismal metabolic networks have also been shown to 
share this feature [8]. Metabolic networks are particu-
larly relevant to the question of the co-evolution of life 
and environment as they provide the most direct in-
formation about the mechanisms and processes by 
which organisms interact with their geochemical envi-
ronment to transform chemical species and evolve [9].  

 
Figure 1. Metabolic networks inferred from Yellowstone National 
Park (YNP) metagenomic data. Networks consist of data from 26 
metagenomes throughout diverse hot spring communities in YNP. 
Left: Sampled phototrophic communities. Right: Sampled chemo-
trophic communities. Center: Both communities combined. Nodes 
shared by both communities in light blue. Nodes exclusive to chemo-
trophic communities in dark blue. Nodes exclusive to phototrophic 
communities in red. 

Empirical Analysis: We are studying the metabol-
ic networks of microbial communities in hot spring 
ecosystems across a range of pH, temperature, and 
elemental abundance (Figure 1) [10]. Precursory net-
work analysis of these communities has revealed that 

they are scale free, like a scaled version of individual 
organismal metabolic networks. Analyses of reactions 
catalyzed within communities have also revealed that 
across diverse sample sites, communities have the 
same distribution of reactions catalyzed vs. enzymes 
doing catalysis. Whether these patterns are a result of 
selection at the individual or communal level, and why 
the same pattern would emerge across different envi-
ronments has yet to be determined 

Computational Model: We are developing a com-
prehensive computational model to study the evolution 
of metabolic communities in an environmental context. 
Our model consists of a spatial grid containing organ-
isms—defined by their enzyme repertoire—and me-
tabolites—defined by a binary string of length m. The 
system allows for 2m metabolites, which undergo reac-
tions (transformations) when catalyzed by an enzyme. 
The propensity for any given reaction is proportional 
to the concentration of the two reactants, the concen-
tration of any catalyzing enzymes, and each enzyme’s 
reaction specific rate constant. Using the Gillespie Al-
gorithm, a variant of the Kinetic Monte-Carlo algo-
rithm [11], a reaction is simulated every time step, 
chosen by a probability distribution weighted by reac-
tion propensities. After each time step, propensities are 
updated to reflect changes to the system. Reactions 
provide energy to their organisms, which then use this 
energy to reproduce once they reach an energy thresh-
old. Organisms can also die when they consume too 
much energy without gaining energy from metabolic 
transformations.  

Preliminary results of our computational model and 
the insights they provide into the empirically observed 
network structure of metabolic communities will be 
reported. 
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