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Before the ~4.0 Ga Hellas impact [1], a hypothesized 

dynamic Mars included a powerful dynamo/magnetosphere 

and a global hydrological cycle with an ocean, and plate 

tectonism [2]. A prime sign of this is a systematic, spatial 

arrangement of landforms in a pattern strikingly similar to 

that of the western United States [3]. The latter resulted from 

plate tectonism, including subduction of the dense, mafic 

Farallon Plate beneath the less dense, felsic North American 

Plate. The proposed Claritas subduction region [3] includes 

pre-Tharsis mountain building and basin formation, activities 

which may have contributed to the Tharsis Superplume [4]. 

Inferring from Earth history, an ocean with a sufficient water 

column (i.e., depth above the oceanic ridges) was necessary 

for plate tectonism to operate [5]. This points to a Hadean-

age-equivalent (HAE) Martian ocean, and also a relatively 

dense atmosphere, which may have interacted with a felsic-

enriched supercontinent (i.e., cratered highlands [6]) through 

Sun-driven hydrological cycling [7].  

Martian planetary differentiation [2] and the initiation of 

a primordial ocean [8] may have occurred near the onset of 

Mars geological history (~4.4 Ga). With the dynamo termi-

nating prior to 4.0 Ga and plate tectonism possibly continu-

ing until ~3.83 Ga [9] (for estimated absolute ages correlated 

with time-stratigraphy see [10]). Examples of prime targets 

to sample for potential HAE rock/environmental records, 

using current lander mission designs, are Phlegra Montes and 

portions of Terra Sirenum [11], where alluvial fan materials 

and possible paleosols [12] would provide samples from 

basement complex materials. Moreover, landing sites in both 

these regions could also yield younger geological records, 

such as ~3.85 Ga to 1.03 Ga marine deposits and ~<.33 Ga 

Elysium lava flow materials that occur near Phlegra Montes. 

At the time of the Hellas impact [1], major changes in 

global planetary conditions of Mars included cessation of a 

dynamo and magnetosphere at about 4.0 Ga [2]. In addition, 

plate tectonism was slowing down, the atmosphere was thin-

ning, and the subaerial environment was being increasingly 

exposed to enhanced solar and cosmic bombardment [2]. 

Even so, within about 70 myr after the Hellas impact, the 

Argyre event generated a lake sufficient in extent to have 

sourced the Uzboi Vallis [13] that conveyed water through 

various channels and basins to the northern plains ocean 

[14]. Directly following the Argyre impact, surface water 

bodies on Mars included a northern plains ocean [14], the 

Argyre [13] and Hellas [15] megalakes, and smaller crater 

lakes [16]. The Argyre basin records evidence of long-term 

water enrichment and energy conditions, including impact-

derived basement structures that acted as conduits for the 

migration of heat energy and volatiles. The occurrence of 

probable open system pingos downslope of structurally-

controlled gullies [17] suggest that this activity may persist, 

making these features of particular astrobiologic interest but 

requiring nontraditional modes of reconnaissance [18,19]. 

Valles Marineris has recorded long-term, magmatic-

tectonic activity including hydrothermal activity since at least 

~3.85 Ga [20]. Like Argyre, Valles Marineris has served as a 

major catchment for atmospheric moisture in the form of 

transient precipitation [21] and persistent fog, as well as 

groundwater channeled along basement structures.  Moreo-

ver, there are possible indications of  present-day hydrologic 

activity provided by the RSL [22]. As such, Argyre and Val-

les Marineris are prime astrobiological targets [13,23]. 

Close in time to the Hellas impact, the Tharsis Super-

plume began to form with at least five subsequent stages of 

development [4] that would leave their mark in the Martian 

basins, including the northern plains [14] and the Argyre 

basin [13]. Recent magmatic-tectonic-hydrologic activity 

(<few hundred kyr) in the Tharsis/Elysium corridor, where 

Tharsis might be interacting with the Elysium Superplume 

through basement structures that intersect the intervening 

Amazonis and Elysium basins [24], includes possible venting 

in the western Elysium Planitia making it feasible to analyze 

recently exposed subsurface materials in situ [25].  
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