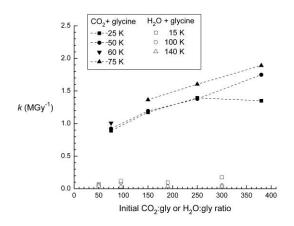
THE RADIATION STABILITY OF GLYCINE IN H₂O-ICE AND CO₂-ICE: IN SITU LABORATORY MEASUREMENTS WITH APPLICATIONS TO MARS. P. A. Gerakines¹ and R. L. Hudson¹, ¹Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, perry.a.gerakines@nasa.gov


Introduction: Planetary bodies of astrobiological interest, such as Mars, are often exposed to harsh incident radiation, which will influence the times that molecules can survive on them. Some or all of these bodies may well contain biologically-important organic molecules, some may even have supported life at some point in their history, and some may support life today. Future searches for organic molecules likely will include sampling the martian subsurface, where organics may be frozen in ices dominated by either H₂O or CO₂, which provide some protection from ionizing radiation.

The radiation dose received by molecules on Mars is sensitive to depth beneath the exposed surface [1], where galactic cosmic rays and Solar energetic particles (mainly protons) dominate the subsurface particle-radiation environment.

Results: Recently, our research group has published studies of the radiation stability of three amino acids - namely, glycine, alanine, and phenylalanine in both undiluted form and in mixtures with H₂O [2, 3]. Here, we focus on the radiation-chemical kinetics of glycine and compare results for its dilution in both H₂O and CO₂ ices [4]. For each sample, we measured glycine's destruction rate constant and half-life dose due to irradiation by 0.8-MeV protons. All measurements were made *in situ* at the temperature of irradiation using IR spectroscopy. Trends with dilution (up to ~380:1) and temperature (up to ~140 K) are considered, and results are discussed in the context of Mars.

Acknowledgment: Our work is supported in part by the NASA Astrobiology Institute through the Goddard Center for Astrobiology.

References: [1] Dartnell, L. R. et al. (2007) *Geophys. Res. Lett.*, 34, L0227. [2] Gerakines, P. A., et al. (2012) *Icarus*, 220, 647-659. [3] Gerakines, P. A. and Hudson, R. L. (2013) *Astrobiology*, 13, 647-655. [4] Gerakines, P. A. and Hudson, R. L. (2015) *Icarus*, in press. [5] Hassler, D. M. et al. (2014) *Science*, 343, 1244797.

Fig 1. Glycine destruction rate constants (in MGy^{-1}) for CO_2 + glycine samples with different compositions and corresponding data from H_2O + glycine ices.

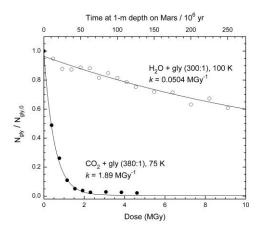


Fig. 2. A comparison of the surviving fraction of glycine molecules versus dose (in MGy) for glycine diluted and irradiated in two different ices, H_2O and CO_2 . The top axis gives corresponding times at a depth of 1 m on Mars based on the dose rate of 36.4 mGy yr⁻¹ (from [5]).