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Introduction: Co-evolution of early life and sur-

face environment has been one of the most important 
events on Earth. Rise of atmospheric oxygen, or as 
known as GOE (Great Oxidation Event: e.g., [1]), has 
been widely believed to have occurred at around 2.4 
billion years ago. But geological and geochemical evi-
dence suggest possibility of much earlier (by hundreds 
of millions of years) existence of oxic atmosphere and 
oceans. Records of geochemical cycling of bio-
essential, redox-sensitive elements have keys to deci-
pher mysteries of the co-evolution of Earth and life. 

To obtain insight into biogeochemical cycling of 
those elements and early evolution of microbial bio-
sphere from high-quality samples, we drilled through 
Mesoarchean strata in coastal Pilbara (Dixon Island-
Cleaverville Drilling Project, [1]), and obtained 3.2 Ga 
old drillcores (CL1, CL2, and DX) of sulfide-rich 
black shales in the Cleaverville Group, Pilbara Super-
group [2]. The age of 3.2 Ga is particularly important 
not only because it is as long as ~800Ma older than the 
inferred “Great Oxidation Event” when pO2 was lower 
than 0.00001 PAL (e.g., [3]) that has been widely be-
lieved to have occurred at around 2.4 Ga, but also be-
cause there is accumulating geochemical evidence for 
oxygenated atmosphere-ocean system and for diverse 
microbial biosphere [4, 5, 6, 7, 8]. 

Methods:  We conducted a systematic geochemi-
cal study involving sequential extractions of Fe, S, C, 
and N for phase-dependent contents (e.g., pyrite-Fe, 
reactive-Fe, highly reactive-Fe, unreactive-Fe, pyrite-S, 
sulfate-S, organic-S, elemental-S, Corg, Ccarb, Norg, and 
Nclay) and their stable isotope compositions by EA-
irMS, in addition to major and trace (redox-sensitive; 
e.g., Mo) element analysis by XRF, ICP-AES, and 
ICP-MS, for >100 samples. Here we integrate our re-
cent investigations into the redox state of ocean and 
nature of microbial biosphere in the ocean 3.2 Ga ago.  

Results and Discussion:  Isotope compositions of 
carbon and sulfur suggest that photosynthetic organ-
isms produced organic matter and sulfate-reducing 
bacteria were active in a modern Black Sea-type envi-

ronment with a limited supply of sulfate in the 3.2 Ga 
ocean. Nitrogen isotope compositions are fully ex-
plained by microbially-mediated redox-cycling of N, 
possibly involving denitrification and microbial N2-
fixation. Relationship between amounts of pyrite-S and 
Corg suggest presence of syngenetic pyrite as well as 
diagenetic pyrite. Molybdenum concentrations in the 
samples were moderately high and have positive corre-
lation with Corg and Spy contents. 

All of the obtained data are very difficult to explain 
only by geochemical processes in strictly anoxic envi-
ronments, where both atmosphere and oceans were 
completely anoxic, like an environment before the in-
ferred GOE. Our extensive data set consistently sug-
gests that oxygenic photosynthesis, bacterial sulfate 
reduction, and microbially mediated redox-cycling of 
N, possibly involving denitrification and N2-fixation, 
are very likely to have been operating. These may be 
used as a strong evidence for at least local and tempo-
ral existence of oxidized environment as far back as 
3.2 Ga ago. Modern-style biogeochemical cycling of 
Fe, S, C, N, and Mo has been operating since then. The 
atmosphere-hydrosphere system 3.2 Ga ago would 
have been sufficiently oxidized to allow redox-cycling 
of elements during deposition of the sediments, ~800 
Ma earlier than commonly thought. Our suggestions 
have far-reaching and astrobiological implications for 
earlier evolution of the surface environment, especially 
redox state, and marine microbial biosphere. 
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