BENTHIC MAT O₂ OASES: A MODERN ANALOG FOR EARLY EARTH. D. Y. Sumner¹, I. Hawes², T. J. Mackey¹, A. D. Jungblut³, M. Krusor¹, and P. T. Doran⁴, ¹Department of Earth and Planetary Sciences, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, dysumner@ucdavis.edu, ²Gateway Antarctica, University of Canterbury, Christchurch, New Zealand, ³Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK, ⁴Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA 70803. **Introduction:** Cyanobacterial photosynthesis produces an "oasis" of free O2 in benthic mats below an anoxic water column in Lake Fryxell, Antarctica. Rates of photosynthesis are slow due to low irradiance, but O₂ production seasonally exceeds consumption and loss to the surrounding environment, and O₂ accumulates within the mat during summer. These transient O₂ oases provide the first known modern analog for formation of O2 oases during Archean time, prior to oxidation of Earth's atmosphere. We hypothesize that once the first cyanobacteria evolved, they produced localized O₂ oases in benthic mats analogous to those in Lake Fryxell under a reducing atmosphere and surface waters. Then, as the efficiency of photosytem II increased and cyanobacteria evolved mechanisms to reduce photoinhibition, O2 oases expanded within benthic mats and into the water column, eventually leading to oxidation of the upper oceans and the atmosphere. The presence of O₂ oases in benthic mats in terrestrial aquatic systems like those in Lake Fryxell may account for geological evidence for oxidative sulfate mineral weathering on land as early as 2.8 billion years ago. Lake Fryxell: Lake Fryxell (75°35'S, 163°35'E) is a perennially ice-covered Antarctic lake. The stratification and ice-cover, inhibit mixing so that solute transport below 5 m depth is dominated by diffusion. An oxycline at ~9.5 m depth separates O₂ saturated water from deeper euxinic water. Irradiance is highly seasonal with six months of winter darkness. **Results:** In November 2012, light transmitted through the ice and water resulted in 1 µmol photons/m²s (the lower limit for net photosynthesis [1]) Fig. 1: O_2 with depth in Lake Fryxell. Error bars represent 1 standard deviation. Values below zero are artifacts of electrode calibration for high O_2 at shallow depths. reaching 10.4 m depth in Lake Fryxell. However, the water column transitioned from O_2 supersaturated at 9.1 m to complete anoxia below ~9.8 m (Fig. 1). Net O_2 production in benthic mats at 9.8 m is demonstrated by a peak in O_2 at 1 mm depth in the mat (Fig. 2). The spatial distribution of O_2 indicates a flux to the water column of 0.04 μ mol O_2/m^2 s and into the sediment of 0.013 μ mol O_2/m^2 s. A net export of 0.05 μ mol O_2/m^2 s is consistent with expected local photosynthetic rates. **Implications:** Archean terrestrial environments as old as at least 2.7 Ga contained benthic mats [2]. Once O_2 photosynthesis evolved, lakes likely hosted O_2 oases analogous to those in Lake Fryxell, providing microenvironments for oxidative weathering of pyrite, which could provide a mechanism for observed trace element fluxes [3]. Thus, local mat oases provide an alternative to whiffs of atmopheric O_2 . **References:** [1] Hawes I. et al. (2001) *Antarc. Sci.* 13, 18-27. [2] Buck R. (1992) *Science* 255, 74 –77; Rye R. and Holland H.D. (2000) *Geology* 28, 483-486. [3] Anbar A.D. et al. (2007) *Science* 317, 1903–1906. Fig. 2: Profiles of dissolved oxygen through mat-water interfaces in Lake Fryxell. A) The mean and one standard deviation of two replicate profiles through a mat in the oxic part of the water column (9.0 m depth). B) The mean and one standard deviation of 5 replicate profiles in the anoxic part of the water column (9.8 m depth).