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How Do We Scratch the Surface? . |
1) At present, landers to Europa or Enceladus are (nearly) prohibitively expensive since landing
systems grow exponentially depending on landed mass. The existing landing systems for Mars, hybrids of the sky crane design, are the
best solution currently available, but it is not clear that this is the optimum solution for bodies without atmospheres.

2) These surfaces require better landing technologies. The Europa Lander study was limited to a 25 kg
science payload, constrained by the sky crane syst‘This IS an insufficient payload to achieve science in the subsurface.

Flyby. Orbit. Land. Drill. Swim.




