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Deep Space CubeSats in Perspective
Some of the very first (Fig. 1 below) interplanetary deep-

space cubesat missions are currently in development!

• A recent NRC study on all CubeSats launched through 
2015 indicates that 67 percent of them have been 
considered successful in orbit, i.e., they achieved full 
success (33 percent) or partial success (34 percent) 
criteria (Figure 2). 

• NASA Class C/D missions have a ~80 percent success 
rate

• NASA Class A/B and NOAA operational missions have a 
~90 percent success rate. 

More recent (2008-2015) CubeSat missions, using a “Fly-
learn-refly” approach (i.e. Aerospace Corporation, NSF 
CubeSat program) have been more successful (71%) then 
those launched between 2000-2007 (35%) [1]. 

A recent independent study from U. Munich found similar 
reliability rates [2].
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Typical Planetary Science Mission Features:

• Longer duration
• Higher power
• Larger DV
• Larger spacecraft mass driven by science and engineering requirements
• Higher cost associated with lower acceptable project risk

Pre-existing spacecraft technologies developed for near-Earth missions must 
be modified and adapted for use in deep space planetary science missions. 

These include:
• Propulsion
• Communications
• Power systems (fault protection)
• Operational simplicity (lower cost)

Conventional vs. Electric Propulsion

Comms/Power/Instrumentation

Science Instrumentation
Remote sensing instrumentation for deep-space planetary 
CubeSats is rapidly advancing to achieve high resolution 
imaging, IR spectroscopy, thermal mapping, and neutron 
spectroscopy (subset of miniaturized CubeSat science 
payloads in development below).

Planetary Science CubeSats in 2020 - 2050
• Launch Opportunities: Increased launches are 

necessary to support the “Fly-learn-refly” and “learn-
as-you-fly” approach

• Cost/Risk: Increased investment now (despite possible 
failures) can pay off, if a strong commitment is made 
to the CubeSat platform and design philosophy

• Mission Design for Planetary Science: CubeSat 
rideshare opportunities should increase, but CubeSat 
platform mission designs should differ from that of 
larger spacecraft. Acceptance of high-risk/high-reward 
mission strategies will ensure deep-space CubeSats are 
a valuable addition to future deep-space rideshare 
opportunities. Looking to 2020-2050, ~6U CubeSats
may focus primarily on high-risk/high-reward mission 
concepts such as multi-asteroid surveys, soft landers, 
penetrators or low-altitude orbiters. 

• Key Technology Developments: Challenges for deep-
space CubeSats without a parent spacecraft include 
management of radiation, power, telecommunications 
and autonomous navigation. Developments in these 
technologies will be critical CubeSats to truly become 
independent deep-space missions. Continued 
investment by NASA in miniaturized planetary 
science instruments for CubeSats will enable new 
mission concepts.

Fig. 1: Cumulative graph of the 104 NASA and NSF-funded CubeSat spacecraft 
launched and planned through 2018. The first deep-space planetary science 
CubeSats will be flown in 2016 – 2018 [1].

Fig. 2: Partial and full mission success for CubeSats launched from 2000-2015. 
Full success is nominal operations in-orbit nominally with completion of mission 
objectives. Partial success is commissioning and taking actions towards 
achieving primary mission objectives [1].
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• High energy trajectories require large 
mass of chemical propellant;

• Electric propulsion uses less mass, 
takes much longer

Mission design considerations for long durations
• Hardware reliability
• Operations costs
• Reducing mass by using electric propulsion creates very long mission duration 

and ops expense

Fig. 4: CubeSat 
reliability is found to 
fall around 60% after 2 
years in orbit (with 95% 
confidence interval) [2] 
http://digitalcommons.u
su.edu/cgi/viewcontent.
cgi?article=3397&conte
xt=smallsat

Figure 3: 
Subsystem 
contributions to 
CubeSat failure 
after ejection 
(incl. DOA), 30 
days and 90 days

JPL IRIS radio is capable of deep-space 
communication via the DSN at:
• Cis-lunar and lunar space via patch antennas 

(LunaH-Map, Lunar IceCube, BioSentinal –
SLS EM-1)

• Mars via a reflector array (MarCO – Insight) 
[3,4]

Blue Canyon Technologies 
is developing 3-12U 
CubeSat including power 
systems (<6W bus power; 
25-100Whr storage), 
C&DH, FSW, comms, and 
orbit lifetime in LEO of 
>3.5 years [5]

MMA Designs, LLC is developing 
large deployable solar arrays capable 
of providing >60W on a 6U CubeSat. 
The arrays are also gimbaled for peak 
power tracking (LunaH-Map – SLS 
EM-1) [6]

Fig. 7: Top left – 2U Miniature 
Neutron Spectrometer (Mini-NS) in 
development for the LunaH-Map 
mission [7,8]. Top right – BIRCHES 
IR spectrometer in development for 
Lunar IceCube mission [9]. Right –
Lunar flashlight NIR laser reflectance 
instrument [10].


